
 

 

2.6.1 – Monitoring RAS operation 

Practical guidance – collaborative robots (cobots) 

Authors: Peng Wang, Shenglin Wang, James Law, Lyudmila Mihaylova (CSI:Cobots 
demonstrator project) 

This guidance provides a generic framework for safe sensing and decision-making by 
ensuring the safety of a collaborative robot and an operator using widely available optical 
camera systems.   

A collaborative robot (cobot) is a robot that is capable of being used in a collaborative 
operation alongside humans in a shared workspace. Cobots are “designed with a variety of 
technical features that ensure they do not cause harm when a worker comes into direct 
contact, either deliberately or by accident” [2]. This guidance outlines an approach to safety 
sensing using convolutional neural networks (CNNs) to determine the separation of robots 
and operators in shared spaces.  

This guidance refers to the defined workspace as a working cell, or simply ‘cell’ hereafter, in 
which humans are working in close proximity to robots. Typically, human operators are 
separated from robotic equipment by physical safety fences and barriers, or by safety 
sensors such as light gates, proximity scanners, optical safety cameras, etc., which prohibit 
complex human-robot collaboration, impose fixed and space-demanding infrastructure, 
reduce operational flexibility, and can be costly [1, 3].  In response to these challenges, this 
guidance proposes a more flexible approach to safety sensing and decision-making by 
applying sophisticated learning approaches to visual feeds from widely available optical 
camera systems. 

The safe sensing and decision making (S2DeMa) framework aims at identifying behaviours 
of the robot and the operator that could lead to harmful consequences to both parties. The 
framework is composed of a camera system for perception and a CNN module for object 
detection and decision making. The identification of hazardous behaviours and upon which 
decisions are made to either slow down the robot or warn the operator of potential risks 
hold the promise of 1) ensuring safe collaborative operation; 2) increasing flexibility in 
collaborative operation (such as responsive collaboration as defined in [2]). This will also 
serve as a prerequisite to enable robots to move and work safely alongside humans in open 
space, for meeting the modern demands of mass-customisation, higher product variability 
and quality expectations, and faster product cycles [4]. 

Summary of S2DeMa framework 

The main steps of S2DeMa are: 

1. Setting up the visual monitoring system 
2. Implementation of mask R-CNN [5] for object detection and classification 
3. Data preparation 
4. Model selection, training, and testing 
5. Safe decision making with confidence quantification 
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6. Determine safety criteria of collaborative operation between the operator and 
the robot 

Implementation of the approach 

The application of the S2DeMa framework requires: 1) a collaborative workspace containing 
humans and robots; 2) a vision system covering areas of potential contact/interaction; 3) a 
criterion for safety decision-making, based on the detected proximity of entities. The 
minimum setup should include a human operator, a robot, and a visual monitoring system 
containing at least one camera. The system monitors a collaborative workspace, using 
images gathered from the camera to identify and track humans and robots in the space. 
Bounding boxes applied to tracked entities are used to identify potential collisions when 
objects overlap or come in close proximity in the image space. The bounding boxes are also 
transformed into physical world coordinates for other practical applications. A separate 
ruleset for decision-making is required to determine how to interpret proximity information 
and bounding-box overlaps. Below we describe the results of applying a minimally 
configured S2DeMa framework. The main steps of S2DeMa are: 

1. Setting up the visual monitoring system 
The visual system plays a key role in implementing the S2DeMa framework. It collects 
data for the object detection module, which is a mask R-CNN in this guidance. The 
S2DeMa framework also relies on the visual system to transform detection results 
from the image space to the physical world, to enable higher level decision making. 

Figure 1 shows a typical visual monitoring system, where the camera Oc is mounted 
above the robot, looking down over the workspace. Measuring the relative position of 
the camera with respect to the robot base coordinate system OB manually is usually 
inaccurate. Therefore, one needs to calibrate the visual system to ensure correct 
sensing and decision making. To be specific, two types of calibration need to be 
carried out:  

1) Obtain the intrinsic and extrinsic camera matrices following the method proposed 
[6]  

2) Obtain the relative position of the camera in OB by carrying out the eye to hand 
(Eye2Hand) calibration as shown in Figure 1. 

Note that OT and OE denote the coordinate systems of the robot effector and an 
attached checkerboard as shown in Figure 1 used for Eye2Hand calibration. 
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Figure 1 - Eye2Hand camera calibration 

2. Implementation of mask R-CNN for object detection and classification 

The implementation of mask R-CNN for the detection and classification of the 
operator and the robot involves two steps as follows: 
 
2.1 Data preparation 

a. Real data 

Camera data is collected on the operator, robot, and environment, carrying out typical 
actions (but under safe conditions). Image size and resolution should be adjusted 
depending on the capacity of the hardware and the process of interest. The recorded 
data are stored locally for model training. 
In our example, the camera records images of size 1920 x 1080 at 30 fps. However, 
there is no hard requirement of the image size. The input images can be re-scaled to 
meet the requirements of the mask R-CNN. Typical image size can be found in [7] as 
1024 x 1024. The robot base must be fixed firmly to avoid vibration of the robot arm - 
such vibrations could lead to blurred images that cause performance degradation of 
the mask R-CNN model. 
Before training the mask R-CNN model, the raw data needs to be annotated. This 
guidance utilises LabelMe [8] for robot contour and bounding box annotation. Up to 
1000 robot images are annotated for mask R-CNN training. Human data from COCO 
[9] are used for operator detection. Up to 2000 human images are extracted. In total 
there are 3000 real images prepared. This dataset will be augmented later to improve 
detection and classification performance. There is no general standard for the number 
of real images. In this case, 32,028 images with 3000 real images and 29,028 simulated 
images are used for model training. In general, the number of images is positively 
correlated with the performance of the trained mask R-CNN model. 
b. Virtual augmented data 

Data annotation is notoriously labour intensive. Unfortunately, it is critical in 
improving the performance of the mask R-CNN model. This problem is mitigated by 
taking advantage of computer-based simulators to generate robot data with contour 
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information, which can be further used to produce bounding boxes. Figure 2 
compares a simulated robot and a real robot. The advantages of using such computer-
based simulators also include adjusting light condition, randomise background for 
data augmentation, etc. The mask R-CNN model can henceforth be trained by 
simulated data and next generalised to process real data. Domain Randomisation (DR) 
[10] and Domain Adaptation (DA) [11] can be incorporated to bridge the gap between 
the real and simulated data, to improve model performance during generalisation. 

 

Figure 2 - Examples of a simulated robot and a real robot 

2.2 Model selection, training, and testing 
Model selection is another factor that affects the performance of the S2DeMa 
framework besides datasets. In particular, the backbone CNNs used for feature 
extraction have prominent impacts on detection accuracy and efficiency. There exists 
a series of backbone CNNs, with strength in either accuracy or efficiency, or a 
compromise of the two. One can select the backbone CNN according to requirements 
of the task. The model should in minimum output both classification and detection 
results, as shown in Figure 3. The classification tells if an object is the operator or the 
robot, while the detection yields a bounding box that encloses the object.  

When the backbone CNN is determined, model training and testing can be carried out 
subsequently. In general, one takes 70% of the images for training and the remaining 
30% for testing. The metrics for evaluating the training and testing accuracy are 
twofold:  
 
1) for detection, the Average Precision (AP), AP50 (AP at IoU = 0.50, IoU: 
Intersection over Union), and AP75 (AP at IoU = 0.75) are used 

2) for classification, the Accuracy = (TP+TN)/(TP+FP+FN+TN), Precision = 
(TP)/(TP+FP), and Recall = (TP)/(TP+FN) are mostly used, where TP stands for True 
Positive, FP is False Positive, TN represents True Negative, and FN is False Negative 
[12]. 
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Figure 3 - The mask R-CNN framework for object detection and classification [5] 

3. Safe decision making with confidence quantification 

Ensuring safe collaborative operation, especially in the presence of human operators, 
requires not only classification and detection of the operator and the robot, but also a 
measure of confidence in that detection. The confidence quantification process is, 
however, inherently iterative. It should be refined in parallel with the development of 
the control mechanism and other safety and security measures. 

This guidance considers two types of confidence on the results:  

1) classification confidence 
2) confidence while transferring bounding box coordinates from image space to the 

physical world. 

The first type of confidence indicates how confident the model is on the image 
classification results. For instance, when the model classifies an object to be an 
operator with 98% confidence, it means that the model is confident in the 
classification result. To ensure safety, this guidance sets a confidence threshold, for 
instance 80% for classification. Any classification results with confidence below the 
threshold will be discarded (it is possible that the mask R-CNN does not detect the 
object of interests in one image - this can be mitigated when streaming data are 
processed, which is the case in this guidance). The second type of confidence counts 
for the inaccuracy of camera calibration. The calibration can be repeated 
independently multiple times (five in our case), each time with a set of camera 
matrices. The bounding box coordinates in the image space can then be transformed 
into the physical world with each set of camera matrices and a statistical variance σ 
can be obtained. It can be taken as a measure to expand the physical area 
corresponding to a bounding box to further ensure safety. 

4. Determine safety criteria of collaborative operation between the operator and the robot 

Mask R-CNN is able to detect objects of interest (the operator and the robot) and use 
bounding boxes to indicate the areas where the objects are most likely to locate. 
Mounting the camera on the roof of cell enables us to detect the operator and the 
robot in a horizontal two-dimensional space. This substantially provides a way of 
defining the criteria for safe collaborative operation. Suppose one has obtained the 
bounding boxes of the operator and the robot, and overlap (indicated by red 
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rectangles in Figure 4) between the two bounding boxes that is denoted as OVERLAP. 
The coordinates of these bounding boxes are transformed from the image space to 
the physical world and the area of the bounding boxes and the OVERLAP can therefore 
be calculated. The safety criteria are then defined as: 

Safe: If the area of OVERLAP is below the safe threshold S, as shown in Figure 4 (a); 

Potential: If the area of OVERLAP is between the safe threshold S and the dangerous 
threshold D, as shown in Figure 4 (b); 

Dangerous: If the area of OVERLAP is over the dangerous threshold D, as shown in 
Figure 4 (c). 

 

Figure 4 - Safety criteria: (a) Safe; (b) Potential; (c) Dangerous. The red rectangles indicate the overlapping 
areas. 

Example of application of guidance 

The framework is implemented and tested in a single operator, single robot collaborative 
cell, and a camera is installed overhead as shown in Figure 5. This is a minimum 
configuration of the framework, which can be generalised to detect multiple human 
operators and robots within the Field Of View (FOV) of the camera.  The state-of-the-art 
deep-learning-based object detection and segmentation method - mask R-CNN [5] is 
implemented to detect the robot and the operator, along with confidence quantification of 
the detection results. 
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Figure 5 - The camera and top view of the cell 

In this example, a Kinect V2 is used for data collection, the backbone of the mask R-CNN 
model is ResNet101-RPN [13]. The number of images (real plus simulated data, with a 
simulated-to-real ratio of 1:1; real data includes that extracted from COCO for human 
detection) in the training dataset is 24021, while the testing dataset contains 8007 images 
with the same simulated-to-real data ratio. Figure 4 shows the object detection and 
classification results with classification confidence embedded in each subfigure. In this 
example we not only show the detection results of the operator and the robot, but also 
demonstrate the possibility of detection and classification of each component of the robot 
for finer sensing and decision making. In this example, the robot is decomposed into four 
components, i.e. the base, the shoulder, the elbow, and the wrist. We can see that the 
S2DeMa framework has successfully detected the operator, the robot, and the robot 
components with high confidence.  

The safe threshold S and the dangerous threshold D are set to 0 and 10, respectively. This 
means that if the bounding boxes of the robot and the operator overlap each other, we 
consider it as potential risk. When the overlap exceeds 10 pixels, we take it as dangerous. 
This happens when then bounding box of the operator starts overlapping the bounding box 
of the robot. It is rather conservative, but helps to ensure safety of both parties. 

In this example, given the upper left vertex of a bounding box (Ix,Iy), it is transformed to the 
physical world via [14] 

  (1) 

where the left-hand vector is the homogenous physical world coordinates, R is the rotation 
matrix and T is the translation matrix, Zc is the coordinate of OC in OB and K is the intrinsic 
matrix. Note K-1 is used to ensure the coordinates are with respect to the robot base 
coordinate system OB rather than the camera coordinate system OC to generalise the 
framework. We only consider the movements of the robot and the operator in the xoy plane 
in this example. The variance σ calculated from camera calibration is 5 cm. Hence, when the 
confidence level is considered, the upper left vertex will be changed following the rules:  
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1) 68% confidence upper left vertex:  

2) 95% confidence upper left vertex:  

3) 99.7% confidence upper left vertex:  

For instance, after transforming the upper left vertices of the bounding boxes in Figure 6 (a) 
via Eq. (1), one can get the following physical world coordinates with respect to OB: 

Table 1: World coordinates corresponding to the upper left vertices of the bounding boxes Figure 6 

Object Operator Base Shoulder Elbow Wrist Robot 

(x, y) 
(cm) 

(-194.6, 
39.0) 

(-5.6, 
1.1) 

(-48.4, -
32.1) 

(-102.1, -
17.8) 

(-115.2, -
32.3) 

(-113.7, -
34.4) 

Given σ as 5 cm, one can therefore get the coordinates of 68%, 95%, and 99.7% confidence 
as follows: 

1) 68% confidence: 

Table 2: World coordinates with 68% confidence corresponding to Table 1. 

Object Operator Base Shoulder Elbow Wrist Robot 

(x, y) 
(cm) 

(-199.6, 
34.0) 

(-10.6, -
4.1) 

(-53.4, -
37.1) 

(-107.1, -
22.8) 

(-120.2, -
37.3) 

(-118.7, -
39.4) 

2) 95% confidence: 

Table 3: World coordinates with 95% confidence corresponding to Table 1. 

Object Operator Base Shoulder Elbow Wrist Robot 

(x, y) 
(cm) 

(-204.6, 
29.0) 

(-15.6, -
9.1) 

(-58.4, -
42.1) 

(-112.1, -
27.8) 

(-125.2, -
42.3) 

(-123.7, -
44.4) 

3) 99.7% confidence: 

Table 4: World coordinates with 99.7% confidence corresponding to Table 1. 

Object Operator Base Shoulder Elbow Wrist Robot 

(x, y) 
(cm) 

(-209.6, 
24.0) 

(-20.6, -
14.1) 

(-63.4, -
47.1) 

(-117.1, -
32.8) 

(-130.2, -
47.3) 

(-128.7, -
49.4) 



Body of Knowledge 2.6.1 – cobots practical guidance 
Copyright © 2021 University of York 

 

 

Figure 6 - The detection and classification results: (a) Safe; (b) Potential; (c) Dangerous 
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The original bounding boxes and the bounding boxes that corresponding to the 68%, 95%, 
and 99.7% confidence are shown in Figure 7. For clarity, we only shown the bounding boxes 
of the operator and the robot. We see that by expanding the bounding boxes, the 
framework becomes conservative in determining if the behaviours of the operator of the 
robot are safe. However, it helps ensuring safety. Figure 7 (a), Figure 7 (b), and Figure 7 (c) 
correspond to Figure 6 (a), Figure 6 (b), and Figure 6 (c). For clarity, the detection masks are 
not shown in Figure 7. 

Summary of findings 

The S2DeMa framework utilises neural-network-based learning to visually classify and 
detect robots and operators in a collaborative workspace, for the purpose of making safety 
decisions based on the separation of entities. The framework is also designed to be capable 
of potential extension and generalisation. A three-level safety criteria is proposed for 
decision making. We summarise the major findings along with the development of the 
S2DeMa framework as follows: 

• Camera calibration is crucial for the S2DeMa framework due to the demand of 

transforming bounding box coordinates in the image space to the physical world. A 

small error in camera calibration could lead to errors in bounding box calculations 

and possible collisions. This can be countered by repeating the calibration process 

multiple times and taking an average. The statistical variance is used to expand the 

physical area that corresponds to a bounding box to further ensure safety.  

• Real data preparation is labour intensive, which can be mitigated by employing a 

computer-based simulator to generate robot data that are of fairly high fidelity. 

These simulated data can be used to train the object detection model. Adaptation 

and domain randomisation techniques can be incorporated to improve the model 

performance when it is generalised to process real data. 

• The efficiency of the S2DeMa is mainly determined by the backbone CNN used for 

object detection and classification. It also affects the detection and classification 

accuracy. The backbone CNN is designed to be an independent module that can be 

adjusted case by case. 

• The classification confidence and the inaccuracy caused by camera calibration are 

counted for confidence quantification in this guidance. However, it is worth 

mentioning that the confidence quantification process is inherently iterative. It 

should be refined in progress with the development of the control mechanism and 

other safety and security measures. 

• Whilst this report outlines how neural networks can be used to detect and classify 

entities for use in safety decision making, the approach is not yet certified for 

industrial use, and should not be relied upon as the sole safety system for a 

collaborative robot.  
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Figure 7 - Bounding boxes with confidence: (a) Safe; (b) Potential; (c) Dangerous 
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Abbreviations 

CNNs – Convolutional Neural Networks  
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R-CNN – Region-based CNN  

LiDAR – Light Detection And Ranging 

S2DeMa – Safe Sensing and Decision Making 

Eye2Hand – Eye to Hand 

FOV – Field Of View  

DR – Domain Randomisation  

DA – Domain Adaptation 

AP – Average Precision 

IoU – Intersection over Union 

AP50 – AP at IoU = 0.50 

AP75 – AP at IoU = 0.75 

TP – True Positive 

FP – False Positive 

TN – True Negative 

FN – False Negative 

 

Terminology [1] 

Robot – Robot arm & robot control (does not include end-effector or part)  

Robot System – Robot, end-effector and workpiece +  

Maximum space – Space within which a robot system can move 

Restricted space – Portion of the maximum space restricted by limiting devices that 
establish limits which will not be exceeded  

Operating space – Portion of the restricted space that is actually used while performing all 
motions commanded by the task program  

Safeguarded space – Space defined by the perimeter safeguarding 

Operator(s) – All personnel, not simply production operators, including maintenance, 
troubleshooting, setup, cleaning and production. 

 

 


